Recovery Methods

Shona Halson(1), Romain Meeusen(2)

(1) Department of Physiology, Australian Institute of Sport
(2) Human Physiology & Sports Medicine, Vrije Universiteit Brussel

What is Recovery?
- Process by which the athletes physiological and psychological function is restored
- Recovery can result in an enhanced performance by increasing the adaptation to training
- Increase the quality and quantity of training
- Reduce the risk of developing overuse injuries

What recovery techniques do athletes use?
- Stretching
- Active recovery (warm-down)
- Nutrition
- Massage
- Hydrotherapy
- Compression
- Vibration
- Psychological means and sleep

Hydrotherapy and Cryotherapy

Effects of Cryotherapy?
Effects of Cryotherapy?

- ↑ Circulation
- ↑ Oedema
- ↑ Flexibility
- ↑ Inflammation

↓ muscle spasm
↓ muscle relaxation
↓ pain

Temperature changes within the various tissues

- Skin temperature
- Subcutaneous temperature
- Intramuscular temperature
- Joint temperature

Table 1: Effect of various cooling methods on skin temperature

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abromson et al. (1985)</td>
<td>Water immersion</td>
<td>4</td>
<td>100</td>
<td>10.8°C</td>
</tr>
<tr>
<td>Abromson (1985)</td>
<td>Water immersion</td>
<td>4</td>
<td>50</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Bäthe (1985)</td>
<td>Water immersion</td>
<td>10</td>
<td>20</td>
<td>11.6°C</td>
</tr>
<tr>
<td>Johnstone et al. (1977)</td>
<td>Water immersion</td>
<td>10</td>
<td>20</td>
<td>10.8°C</td>
</tr>
<tr>
<td>Knight et al. (1986)</td>
<td>Water immersion</td>
<td>1.5</td>
<td>40</td>
<td>10.5°C (finger)</td>
</tr>
<tr>
<td>Magni et al. (1979)</td>
<td>Water immersion</td>
<td>7</td>
<td>30</td>
<td>10.5°C (finger)</td>
</tr>
<tr>
<td>Single (1978)</td>
<td>Ice massage</td>
<td>20</td>
<td>15</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Jönsson et al. (1987)</td>
<td>Ice massage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voss et al. (1985)</td>
<td>Ice massage</td>
<td>10</td>
<td>15</td>
<td>10.5°C (finger)</td>
</tr>
<tr>
<td>Jönsson et al. (1987)</td>
<td>Ice pack</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utschek et al. (1987)</td>
<td>Ice pack</td>
<td>20</td>
<td>10</td>
<td>11.6°C</td>
</tr>
<tr>
<td>Zeman (1986)</td>
<td>Ice pack</td>
<td>5</td>
<td>20</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Lee et al. (1976)</td>
<td>Ice pack</td>
<td>20</td>
<td>15</td>
<td>10.5°C (finger)</td>
</tr>
<tr>
<td>Berghard (1985)</td>
<td>Ice pack</td>
<td>100</td>
<td>3</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Raa (1983)</td>
<td>Ice towel</td>
<td>7</td>
<td>10</td>
<td>10.5°C</td>
</tr>
<tr>
<td>John (1987)</td>
<td>Refrigerant gel</td>
<td>15</td>
<td>20</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Botte (1985)</td>
<td>Spray</td>
<td>10 sec</td>
<td>20 (min)</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Johnson & Berghard (1985)</td>
<td>Spray</td>
<td>10-20 sec</td>
<td>10-15 (min)</td>
<td>10.5°C</td>
</tr>
</tbody>
</table>

Table 2: Effect of various cooling methods on intramuscular temperature

<table>
<thead>
<tr>
<th>Reference</th>
<th>Method</th>
<th>Temperature (°C)</th>
<th>Time (min)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abromson et al. (1985)</td>
<td>Water immersion</td>
<td>4</td>
<td>100</td>
<td>12.4°C</td>
</tr>
<tr>
<td>Abromson (1985)</td>
<td>Water immersion</td>
<td>4</td>
<td>50</td>
<td>11.0°C</td>
</tr>
<tr>
<td>Johnstone et al. (1977)</td>
<td>Water immersion</td>
<td>10</td>
<td>20</td>
<td>11.4°C</td>
</tr>
<tr>
<td>Knight et al. (1986)</td>
<td>Water immersion</td>
<td>1.5</td>
<td>40</td>
<td>11.0°C</td>
</tr>
<tr>
<td>Ming & Weis (1983)</td>
<td>Water immersion</td>
<td>15.0-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oliver et al. (1986)</td>
<td>Water immersion</td>
<td>10</td>
<td>20</td>
<td>10.8°C</td>
</tr>
<tr>
<td>Abromson (1985)</td>
<td>Water immersion</td>
<td>10</td>
<td>20</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Pascoe & Weis (1982)</td>
<td>Water immersion</td>
<td>10</td>
<td>20</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Botte (1985)</td>
<td>Ice massage</td>
<td>10</td>
<td>15</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Lennard & Weis (1979)</td>
<td>Ice massage</td>
<td>2</td>
<td>10</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Weyman et al. (1987)</td>
<td>Ice massage</td>
<td>7</td>
<td>5</td>
<td>10.5°C</td>
</tr>
<tr>
<td>Jönsson et al. (1987)</td>
<td>Ice pack</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing et al. (1984)</td>
<td>Ice pack</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Johnson & Berghard (1985)</td>
<td>Ice pack</td>
<td>10-20 sec</td>
<td>10-15 (min)</td>
<td>10.5°C</td>
</tr>
</tbody>
</table>

Skin – Intramuscular Temperature (IMT)

- Intramuscular temperature (2.3 cm deep)
- Subcutaneous temperature
- Room temperature 23-22.2°C
Cryotherapy and blood flow

Clarke, Hellon & Lind (1958)
- Blood flow
- Pletysmography
- Limb blood flow
- No distinction between skin and muscle blood flow!

Materials & Methods
- n=15
- mean age: 20.5 yr
- Ice pack (-5°C) water bag (+32°C)
- Skin temperature
- Laser Doppler flowmeter

Procedure
- 15 min acclimatisation
- 5 min rest values
- 20 min application
- 20 min recovery period

Skin Blood Flow

During application
- first decrease (5th min 56% lower)
- already during application: increase

Following application
- peak volume 3 min post appl
- Cold-Induced Vasodilatation
- gradual decrease
Intramuscular blood flow

Tracer study 133Xe

- Distinction between skin blood flow and intramuscular blood flow
- Cold Induced Vasodilatation depends on tissue temperature
- Skin blood flow will increase intramuscular blood flow → vasoconstriction, probably no dilatation

Thorsson et al (1985)

Cryotherapy & Blood Flow

Contrast Therapy - Background

- Rationale - increase blood flow
- stimulate central nervous system
- Evidence - scientific
- anecdotal

Contrast Therapy - Methods

- 1 minute in spa
- 1 minute in plunge pool
- Repeat 7 times

NB: Spa at AIS 38°C.
Plunge pool at AIS 10-12°C

Cold Water Immersion

Ice Baths: a Great Way to Enhance Team Spirit!
What evidence do we have that recovery works?- Hydrotherapy

- Subjects: 11 AIS Professional Cyclists
- Purpose: What are the physiological effects of cold water immersion following cycling in the heat

40 min 11°C at 34.3°C: 41.2°F

40 min

RECOVERY PERIOD

Time (min)

0

40

80

What evidence do we have that recovery works?- Hydrotherapy

MEASURES:
- Trec, Tsk, heart rate
- Lactate, glucose, pH, chloride, potassium, bicarbonate, sodium, PO₂ and PCO₂
- Testosterone, cortisol, GH, PRL, A, NA, CK, CRP, IGF-1, IL-6
- Thermal scale, recovery questionnaire

What evidence do we have that recovery works?- Hydrotherapy

RESULTS - Effects of CWI
- Reduced heart rate
- Reduced core temperature
- Reduced skin temperature
- Enhanced perception of recovery
- No change in any other variable

What evidence do we have that recovery works?- Hydrotherapy

Effects of Cold Water Immersion (3 x 1min at 11°C) on Core Temperature in Male Cyclists (n=11)

Core
ICE

Recovery Time (min)

-5 0 5 10 15 20 25 30 35 40 45

36.5

37.0

37.5

38.0

38.5

39.0

39.5

40.0

Thermal Imaging Video

Following Cold Water Immersion

ICE

33.6°C

27.8°C

39.2°C
What evidence do we have that recovery works? - Hydrotherapy

Examination of the effects of regular CWI on performance, adaptation and perceived recovery in AIS rowers
- 10 subjects (6F and 4M) pair-matched according to 2000m ergometer performance, gender and weight category (M)
- CWI (~11°C; 4 X per week), Placebo (sugar capsule)
- 1 week of baseline assessment (training volume, intensity, level of fatigue, perceived recovery, sleep quality and quantity)
- 4 weeks of assessment and treatment
- Pre and post 2000m ergometer assessments

<table>
<thead>
<tr>
<th>HYDROTHERAPY</th>
<th>ICE</th>
<th>CONTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>-4.6%</td>
<td>-2.6%</td>
</tr>
<tr>
<td>VO₂</td>
<td>0.6%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Time</td>
<td>-1.54%</td>
<td>-0.94%</td>
</tr>
<tr>
<td>Rating of Fatigue</td>
<td>0.4%</td>
<td>13.8%</td>
</tr>
<tr>
<td>Rating of Recovery</td>
<td>-3.8%</td>
<td>-11.8%</td>
</tr>
<tr>
<td>Amount of Sleep</td>
<td>3.3%</td>
<td>-9.0%</td>
</tr>
<tr>
<td>Quality of Sleep</td>
<td>17.3%</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

Recommendation to AIS Rowing Coaches → CWI may be beneficial during intense training blocks to adaptation to training and increase performance.

The Effect of Contrast Water Therapy on Symptoms of Delayed Onset Muscle Soreness

Joanna M. Vaile, Nicholas D. Gill, and Anthony J. Blazevich

Department of Physiology, Australian Institute of Sport, Canberra, Australia; School of Sport and Exercise Sciences, University of Waikato, Hamilton, New Zealand; Department of Sport Sciences, Brunel University, England.

13 recreational athletes
- 2 trials randomised cross over (6 weeks apart)
- Eccentric leg press protocol 140% 1RM → DOMS CWT: [1min (ca 10°C) + 2 min 40-42°C] x 5min
- Jump Power, Squat force
- Muscle soreness, recovery score, thigh volume

Passive & Contrast Water Therapy

Peak isometric power

Squat Jump

Passive & Contrast Water Therapy

Creatine Kinase

Thigh Volume

DOMS

- Strength, Power, DOMS improved following CWT compared to Passive recovery.
Hydrotherapy & DOMS

Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness

1. Cold water immersion (CWI: n = 12),
2. Hot water immersion (HWI: n = 11),
3. Contrast water therapy (CWT: n = 15)

Hydrotherapy & DOMS

DOMS-inducing leg press protocol followed by PAS or one of the hydrotherapy interventions for 14 min

Measures:
- Squat jump, Isometric squat, Perceived pain, Thigh girths
- Pre, immediately post, 24, 48 and 72 h post-exercise
- Recovery after eccentric exercise

Water immersion

- Pain improved following ContrastWT at 24, 48 and 72 h post-exercise.
- ColdWI and ContrastWT → effective in reducing the physiological and functional deficits associated with DOMS:
 → improved recovery of isometric force
 → dynamic power reduction in localised oedema.
- HotWI effective in the recovery of isometric force, ineffective for recovery of all other markers compared to PAS

Swelling and Pain

- Cold WI
- Hot WI
- Contrast WT

Change in Squat Jump
What evidence do we have that recovery works?

Hydrotherapy

- Warm up 15 mins @ 75% PPO
- 1) 10ºC
- 2) 15ºC
- 3) 20ºC
- 4) 20ºC +
- 5) Active recovery

± 5 mins seated in heat chamber

10 male subjects (70.7 ± 7.9 ml·kg⁻¹·min⁻¹); randomised, repeated measures design

![Diagram showing warm up, recovery strategy, and performance](image)

Power output

<table>
<thead>
<tr>
<th>Recovery condition</th>
<th>First exercise task</th>
<th>Second exercise task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittent CWI in 10ºC</td>
<td>498 ± 48</td>
<td>495 ± 46</td>
</tr>
<tr>
<td>Intermittent CWI in 15ºC</td>
<td>498 ± 47</td>
<td>500 ± 46</td>
</tr>
<tr>
<td>Intermittent CWI in 20ºC</td>
<td>500 ± 44</td>
<td>495 ± 47</td>
</tr>
<tr>
<td>Continuous CWI in 20ºC</td>
<td>502 ± 47</td>
<td>492 ± 48</td>
</tr>
<tr>
<td>Active recovery</td>
<td>503 ± 42</td>
<td>484 ± 38</td>
</tr>
</tbody>
</table>

![Diagram showing power output](image)

Body Temperature

- Mean Body Temperature
- ACT
- 10ºC
- 15ºC
- 20ºC
- 20ºC +

![Diagram showing body temperature](image)

Cold Water immersion Protocols

- Were effective in:
 - reducing thermal strain
 - More effective than active recovery in:
 - maintaining subsequent high-intensity cycling performance
- No differences in total work between any of the cold water immersion protocols
- No differences in blood lactate concentration between interventions or exercise tasks.

![Diagram showing cold water immersion](image)

Why might hydrotherapy work?

- Decrease in core temperature
- Decrease inflammation - compression
- Decrease pain sensation/nerve conduction
- Increase blood flow?
- Influence on sleep latency

![Diagram showing why hydrotherapy works](image)
Is cold water immersion safe in extreme temperatures?

![Graph showing the effects of cold water immersion on core temperature in male cyclists.](image)

Effects of Cold Water Immersion (3 x 1min @11°C) on Core Temperature in Male Cyclists (n=11)

<table>
<thead>
<tr>
<th>Recovery Time (min)</th>
<th>28.5</th>
<th>30.5</th>
<th>32.5</th>
<th>34.5</th>
<th>36.5</th>
<th>38.5</th>
<th>40.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>28.5</td>
<td>30.5</td>
<td>32.5</td>
<td>34.5</td>
<td>36.5</td>
<td>38.5</td>
<td>40.5</td>
</tr>
<tr>
<td>Wall of 5°C</td>
<td>28.5</td>
<td>30.5</td>
<td>32.5</td>
<td>34.5</td>
<td>36.5</td>
<td>38.5</td>
<td>40.5</td>
</tr>
<tr>
<td>Wall of 1°C</td>
<td>28.5</td>
<td>30.5</td>
<td>32.5</td>
<td>34.5</td>
<td>36.5</td>
<td>38.5</td>
<td>40.5</td>
</tr>
</tbody>
</table>

Recovery Time (min)

- ICE: 9
- Wall of 5°C: 9
- Wall of 1°C: 9

Récupération - Football

- The main findings of these studies:
 - No effect of the recovery methods used (football – futsall)
 - Players “liked” more electrostimulation and water cool-down recovery interventions
 - No main effect of recovery intervention on anaerobic performances

Anaerobic performances

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Control</th>
<th>Wall of 5°C</th>
<th>Wall of 1°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squat Jump</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Counter movement</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Bounce Jump</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>10m Sprint</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Effectiveness of Active Versus Passive Recovery Strategies After Futsal Games

Exercise:
- AS Roma -19
- Squat Jump, Counter movement jump, Bounce Jumping, 10m sprint
- Rest – Land cooling down, water exercises, Electrostimulation

Design:
- Futsal games: more than one/wk
- 4 friendly games in 2 wks (3d interval)
- Recovery: seated rest; electrostimulation; ‘dry’ exec; water exec
- 10 players:
 - 23 ± 2yr
 - 176 ± 4.7cm
 - 73 ± 7kg
 - 52.2 ± 2.7 ml/kg/min

Table 2: Mean ± 95% CI of performances scores (countermovement jump, bouncing jump, and 10m sprint) recorded during the pregame, postgame, and structural stages.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Control</th>
<th>Wall of 5°C</th>
<th>Wall of 1°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squat Jump</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Counter movement</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Bounce Jump</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>10m Sprint</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Note:
- *p < 0.05 is considered statistically significant.
- Effect sizes for main effect are shown in parentheses.

Tessitore et al. 2008
Female climbers

- Anthropometric and demographic data:
 - Age (years): 27.1 ± 8.9
 - Height (cm): 168.9 ± 6.4
 - Weight (kg): 55.4 ± 8.2
 - bmi :19.3 ± 1.9
 - % fat mass: 20.6 ± 5.2
 - Free fat mass (kg): 43.6 ± 4.6

Study Design

- Passive, electrostimulation, cycling, cold water immersion

Recovery in climbers

Active recovery & cold water immersion
- results climb 1 & 2 the same
- Passive & Electrostimulation
 - no effect

Recovery in climbers

Passive, electrostimulation, cycling, cold water immersion

Effect of local cooling

Varies depending on:
- temperature tissues
- depth measurement

Skin blood flow differs from muscle blood flow

IMT:
- delayed drop
- ‘after effect’

Ice Baths / Cryotherapy

- Ice baths: bath or bin filled with ice and water
- Cryotherapy is the most commonly used strategy for the treatment of acute soft tissue sports injuries
- Cryotherapy, including CWI may be an effective treatment to
 - Decrease skin, muscle and core temperatures
 - Reduce inflammation
 - Decrease pain
What happens when you do not get enough sleep?

- Decreased focus
- Cannot process rapidly changing information
- Persevere with strategies that are not working
- Choose high risk options
- Difficulty controlling mood and emotion
- Difficulty in determining why you are making errors
- Confusion remembering instructions, facts
- Loss of sequences of thoughts
- Physical problems such as headaches, stomach aches, sore joints etc

SLEEP IS PROBABLY THE BEST RECOVERY STRATEGY
WE HAVE: Physically and Mentally

Basics for Recovery

- Massage
 - Injury prevention
- Stretching/Warm-down
 - Injury prevention
 - Muscle relaxation
 - Reduce muscle soreness
- Nutrition Recovery
 - Replace carbohydrate, fluid and electrolytes
 - Repair the muscle-protein
 - Protect the immune system

Practical Aspects of Recovery

- Include Recovery as part of the training program
- ‘One-stop shop’/readily accessible facilities
- Athlete education sessions
- Portable devices and preparation for travel
Thank you